Search for

Bibliographia Humboldtiana Index

Bibliographia Humboldtiana

III. Publications by Research Awardees

Mathematics

Benson, Prof. Dr. David J.

University of Aberdeen, United Kingdom
Field of research: Pure mathematics
Host: Prof. Dr. Henning Krause Universität Paderborn
  • David J. Benson and Henning Krause: Complexes of injective kG-modules. In: Algebra and Number Theory. 2, 2008, p. 1 - 30 [modular representation theory, derived category, stable module category, cohomology of groups].

  • David J. Benson, Srikanth B. Iyengar and Henning Krause: Local cohomology and support for triangulated categories. In: Ann. Scient. Éc. Norm. Sup., 4e série. 41, 2009, p. 575 - 621 [triangulated category, local cohomology, support].

  • David J. Benson and Jon F. Carlson: Varieties and cohomology of infinitely generated modules. In: Arch. Math. Basel. 91, 2008, p. 122 - 125 [infinitely generated modules, group algebras, support varieties, idempotent modules].

  • David J. Benson: Idempotent kG-modules with injective cohomology. In: Journal of Pure and Applied Algebra. 212, 2008, p. 1744 - 1746 [idempotent module, injective module, cohomology of groups].

Berkovich, Prof. Dr. Vladimir

Weizmann Institute of Science, Israel
Field of research: Geometry
Host: Prof. Dr. Annette Werner Johann Wolfgang Goethe-Universität Frankfurt am Main
  • Vladimir Berkovich: Finiteness theorems for vanishing cycles of formal schemes. In: Israel Journal of Mathematics. 210, 2015, p. 147 - 191 [non-Archimedean analytic spaces, formal schemes, vanishing cycles].

Bobkov, Prof. Dr. Sergey Germanovich

University of Minnesota, United States of America
Field of research: Analysis
Host: Prof. Dr. Alexander Grigor'yan Universität Bielefeld
  • Sergey Bobkov, Gennadiy Chistyakov, Friedrich Götze: Second order concentration on the sphere. In: Communications in Comtemporary Mathematics. 2016, [Concentration of measure phenomenon, logarithmic Sobolev inequalities].

  • Sergey Bobkov, James Melbourne: Hyperbolic measures on infinite dimensional spaces. In: Probability Surveys. 13, 2016, p. 57 - 88 [Hyperbolic (convex) measures, dimension, localization, dilation of sets].

  • Sergey Bobkov: Closeness of probability distributions in terms of Fourier-Stieltjes transforms. In: Uspekhi Matemat. Nauk. 71, 2016, p. 37 - 98 [Probability metrics, smoothing inequalities].

  • Sergey Bobkov: Closeness of probability distributions in terms of Fourier-Stieltjes transforms. In: Russian Math. Surveys. 71, 2016, p. 1021 - 1079 Original author: Sergey Bobkov (English) [Probability metrics, smoothing inequalities].

  • Sergey Bobkov, Gennadiy Chistyakov, Friedrich Götze: Regularized distributions and entropic stability of Cramer's characterization of the normal law. In: Stochastic Processes and their Applications. 126, 2016, p. 3865 - 3887 [Cramer's theorem, Normal characterization, Stability problems].

  • Sergey Bobkov, Gennadiy Chistyakov, Friedrich Götze: Stability of Cramer's characterization of normal laws in information distances. In: High dimensional probability VII: The Cargese Volume. Progress in Probability. (Ed. Christian Houdre, David Mason, Patricia Reynaud-Bouret, Jan Rosinski) Birkhauser, Springer, 2016, p. 3 - 35 [Characterization of normal laws, Cramer's theorem, Stability problems].

  • Sergey Bobkov: Asymptotic expansions for products of characteristic functions under moment assumptions of non-integer orders. In: The IMA Volumes in Mathematics and its Applications. Concentration, Convexity and Discrete Structures. (Ed. Eric Carlen, Mokshay Madiman, Elisabeth Werner) Springer, 2017, p. 297 - 357.

  • Sergey Bobkov: Concentration properties of restricted measures with applications to non-Lipschitz functions. In: Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics. 2169, 2017, p. 25 - 53.

  • Sergey Bobkov: Berry-Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances. In: Probability Theory and Related Fields. 2017, [Central Limit Theorem, Transport Distances, Edgeworth Expansions, Coupling].

Carey, Prof. Dr. Alan Lawrence

Australian National University, Australia
Field of research: Geometry
Host: Prof. Dr. Christoph Wockel Universität Hamburg
  • Alan Lawrence Carey, Fedor Sukochev: Measurable operators and the asymptotics of heat kernels and zeta functions. In: Journal of Functional Analysis. 262, 2012, p. 4582 - 4599 [Heat Kernels, Zeta functions, Singular traces].

  • Alan Lawrence Carey Paul Frank Baum Bai-Ling Wang: K-cycles for twisted K-homology. In: Journal of K-theory. 12, 2013, p. 69 - 98 [K-theory, Dixmier-Douady class, K-homology, geometric cycles].

  • Alan Lawrence Carey Victor Gayral Adam Rennie Fedor Sukochev: Index Theory for Locally Compact Noncommutative Geometries. Providence, Rhode Island USA: American Mathematical Society, 2014, 130 pp. [Index theory, Non-commutative geometry, Non-compact manfolds, Non-unital C*algebras].

  • Alan Lawrence Carey, Fritz Gesztesy, Denis Potapov, Fedor Sukochev, Yuri Tomilov: A Jost--Pais-Type Reduction of Fredholm Determinants and Some Applications. In: Integral Equations and Operator Theory. 79, 2014, p. 389 - 447 [Fredholm determinants, semi-separable kernels, Jost functions, perturbation determinants.].

  • Alan Lawrence Carey, Harald Grosse, Jens Kaad: Anomalies for Euclidean Dirac operators. In: Communications in Mathematical Physics. 335, 2015, p. 445 - 475 [Dirac operators, anomalies, homological index].

  • Christopher Bourne, Alan Lawrence Carey, Adam Rennie: . In: Letters in Mathematical Physics. 105, 2015, p. 1253 - 1273 [integer quantum hall effect, Kasparov theory].

  • Alan Lawrence Carey, Victor Gayral, John Phillips, Adam Rennie, Fedor Sukochev: Spectral Flow for Nonunital Spectral Triples',. In: Canadian Journal of Mathematics, . 67, 2015, p. 759 - 794 [spectral flow, non-unital spectral triples].

Constantin, Prof. Dr. Adrian

Universität Wien, Austria
Field of research: Analysis
Host: Prof. Dr. Joachim Escher Gottfried Wilhelm Leibniz Universität Hannover
  • Adrian Constantin and Joachim Escher: Analyticity of periodic traveling free surface water waves with vorticity. In: Annals of Mathematics. 173, 2011, p. 559 - 568 [water waves, vorticity, regularity].

  • Adrian Constantin, Joachim Escher and Hung-Chu Hsu: Pressure Beneath a Solitary Water Wave: Mathematical Theory and Experiments. In: Archive for RAtional Mechanics and Analysis. 201, 2011, p. 251 - 269 [solitary wave, pressure].

Donninger, Dr. Roland

Universität Wien, Austria
Field of research: Analysis
Host: Prof. Dr. Herbert Koch Rheinische Friedrich-Wilhelms-Universität Bonn
  • Roland Donninger, Birgit Schörkhuber: A spectral mapping theorem for perturbed Ornstein-Uhlenbeck operators on L^2(R^d). In: Journal of Functional Analysis. 268(9), 2015, p. 2479 - 2524 [Ornstein-Uhlenbeck, spectral mapping].

  • Roland Donninger, Birgit Schörkhuber: On blowup in supercritical wave equations. In: Communications in Mathematical Physics. 346, 2016, p. 907 - 943.

  • Roland Donninger, Birgit Schörkhuber: Stable blowup for wave equations in odd space dimensions. In: Annales de l'Institut Henri Poincaré - Analyse Non Linéaire. 34, 2017, p. 1181 - 1213.

  • Roland Donninger: Strichartz estimates in similarity coordinates and stable blowup for the critical wave equation. In: Duke Mathematical Journal. 166, 2017, p. 1627 - 1683.

  • Matthew Creek, Roland Donninger, Wilhelm Schlag, Stanley Snelson: Linear stability of the Skyrmion. In: International Mathematics Research Notices. 8, 2017, p. 2497 - 2537.

  • Ovidiu Costin, Roland Donninger, Irfan Glogić, Min Huang: On the stability of self-similar solutions to nonlinear wave equations. In: Communications in Mathematical Physics. 343, 2016, p. 299 - 310.

  • Ovidiu Costin, Roland Donninger, Xiaoyue Xia: A proof for the mode stability of a self-similar wave map. In: Nonlinearity. 29, 2016, p. 2451 - 2473.

  • Athanasios Chatzikaleas, Roland Donninger, Irfan Glogić: On blowup of co-rotational wave maps in odd space dimensions. In: Journal of Differential Equations. 263, 2017, p. 5090 - 5119.

  • Annegret Burtscher, Roland Donninger: Hyperboloidal evolution and global dynamics for the focusing cubic wave equation. In: Communications in Mathematical Physics. 353, 2017, p. 549 - 596.

  • Pawel Biernat, Roland Donninger, Birgit Schörkhuber: Stable self-similar blowup in the supercritical heat flow of harmonic maps. In: Calculus of Variations and Partial Differential Equations. 56, 2017.

Hajek, Prof. Dr. Otomar


Field of research: Analysis
Host: Prof. Dr. Werner Krabs Technische Universität Darmstadt
  • Otomar Hajek: Pursuit Games (1st. ed., Academic Press 1975). Mineola, NY: Dover Publications, 2008, 266 pp. [An introduction to the theory and applications pf differential games of pursuit and evasion].

  • Otomar Hajek: Control Theory in the Plane (1st ed., Springer 1991). Berlin: Springer-Verlag, 2009, 220 pp. [Mathematical control theory in finite-dimensional spaces and in the plane].

Karpenko, Prof. Dr. Nikita

University of Alberta, Canada
Field of research: Algebra
Host: Prof. Dr. Marc Noel Levine Universität Duisburg-Essen
  • Nikita Karpenko: Incompressibility of generic torsors of norm tori. In: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) . 414, 2013, p. 106 - 112 [Algebraic tori, toric varieties, incompressibility, Chow groups and Steenrod operations.].

  • Nikita Karpenko: Orthogonal and symplectic grassmannians of division algebras. In: J. Ramanujan Math. Soc.. 28, 2013, p. 213 - 222 [Algebraic groups, quadratic forms, projective homogeneous varieties, Chow groups and motives.].

  • Nikita Karpenko: Sufficiently generic orthogonal grassmannians. In: J. Algebra. 372, 2012, p. 365 - 375 [Algebraic groups, quadratic forms, projective homogeneous varieties, Chow groups and motives.].

  • Nikita Karpenko, Alexander Merkurjev: On standard norm varieties. In: Ann. Sci. Éc. Norm. Supér. (4). 46, 2013, p. 175 - 214 [Norm varieties, Chow groups and motives, Steenrod operations.].

  • Nikita Karpenko: Unitary grassmannians. In: J. Pure Appl. Algebra. 216, 2012, p. 2586 - 2600 [Algebraic groups, hermitian and quadratic forms, projective homogeneous varieties, Chow groups and motives].

  • Nikita Karpenko: Variations on a theme of rationality of cycles. In: Cent. Eur. J. Math. . 11, 2013, p. 1056 - 1067 [Chow groups, quadrics, Steenrod operations, u-invariant.].

  • Nikita Karpenko, Maksim Zhykhovich: Incompressibility of orthogonal grassmannians. In: Acta Math.. 211, 2013, p. 227 - 253 [Algebraic groups, involutions, projective homogeneous varieties, Chow groups and motives, Steenrod operations. M].

  • Prof. Dr. Nikita Karpenko: Incompressibility of products of Weil transfers of generalized Severi-Brauer varieties. In: Math. Z.. 279, 2015, p. 767 - 777 [Central simple algebras, algebraic groups, projective homogeneous varieties, Severi-Brauer varieties, Weil transfer, Chow groups and motives, canonical dimension and incompressibility.].

Levine, Prof. Dr. Marc Noel

Universität Duisburg-Essen, Germany
Field of research: Algebra
Host: Prof. Dr. Ulrich Radtke Universität Duisburg-Essen
  • Marc Levine Fabien Morel: Algebraic Cobordism. Berlin, Heidelberg, New York: Springer, 2007, 244 pp. [algebraic geometry, algebraic K-theory, motivic homotopy theory, algebraic cycles].

  • Marc Levine: Background from algebraic geometry. In: Motivic homotopy theory. Lectures at a summer school in Nordfjordeid, Norway, August 2002.. (Ed. Bjoern Jahren) Berlin, Heidelberg, New York: Springer-Universitext, 2007, p. 70 - 145 [algebraic geometry, sheaf theory].

  • Marc Levine: Motivic tubular neighborhoods. In: Documenta Mathematica. 12, 2007, p. 71 - 146 [motivic homotopy theory, algebraic geometry algebraic cycles, mixed Tate motives].

  • Marc Levine: Steenrod operations, degree formulas and algebraic cobordism. In: Pure and Applied Mathematics Quarterly Journal. 3(1), 2007, p. 283 - 306 [algebraic geometry, motivic homotopy theory, algebraic topology, algebraic cycles].

Milman, Prof. Dr. Vitali

Tel Aviv University, Israel
Field of research: Analysis
Host: Prof. Dr. Hermann König Christian-Albrechts-Universität zu Kiel
  • Vitali Milman, Hermann König: A functional equation characterizing the second derivative. In: Journal of Functional Analysis. 2011, p. 876 - 896.

  • Vitali Milman, Hermann König: Rigidity and Stability of the Leibniz and the Chain Rule. In: Proceedings of the Steklov Insitute of Mathematics. 280, 2013, p. 191 - 207.

  • Vitali Milman; Hermann König: AN OPERATOR EQUATION CHARACTERIZING THE LAPLACIAN. In: American Mathematical Society. 4, 2009, p. 1 - 14.

  • Vitali Milman, Hermann König: Operator equations and domain dependence, the case of the Schwarzian derivative. In: Journal of Functional Analysis. 2014, p. 2546 - 2569.

  • Vitali Milman, Hermann König: The chain rule functional equation on R`n. In: Journal of Functional Analysis. 261, 2011, p. 861 - 875.

  • Vitali Milman, Hermann König: Characterizing the derivative and the entropy function by the Leibniz rule. In: Journal of Functional Analysis. 2011, p. 1325 - 1344.

  • Vitali Milman, Hermann König, Shiri Artstein-Avidan: The chain rule as a functional equation. In: Journal of Functional Analysis. 2010, p. 2999 - 3024.

  • Vitali Milman, Hermann König: Submultiplicative functions and operator inequalities. In: Studia Mathematica . 223, 2014, p. 217 - 231.

  • Vitali Milman, Hermann König: Rigidity of the chain rule and nearly submultiplicative functions. In: Lecture Notes in Mathematics. 2169, 2017, p. 235 - 264.

  • Vitali Milman, Hermann König: The chain rule operator equation for polynomials and entire functions. In: IMA Volumes in Mathematics and its Applications. 2017, p. 1 - 11.

Otto, Prof. Dr. Felix

Max-Planck-Institut für Mathematik in den Naturwissenschaften, Germany
Field of research: Analysis

  • Cantero-Alvarez, R., F. Otto, J. Steiner: The concertina pattern. A bifurcation in ferromagnetic thin films. In: J. Nonlinear Sci.. 17, 2007, p. 221 - 281 [ferromagnetic].

  • Kohn, R.V., F. Otto, M.G. Reznikoff, E. Vanden-Eijnden: Action minimization and sharp-interface limits for the stochastic Allen-Cahn equation. In: Comm. Pure Appl. Math.. 60, 2007, p. 393 - 438.

  • Capella Kort, A., C. Melcher, F. Otto: Wave-type dynamics in ferromagnetic thin films and the motion of Neel walls. In: Nonlinearity. 20, 2007, p. 2519 - 2537.

  • Ignat, R., F. Otto: A compactness result in thin-film micromagnetics and the optimality of the Neel Wall. In: J. Europ. Math. Soc. (JEMS). 10, 2008, p. 909 - 956 [micromagnetics].

  • Otto, F., T. Viehmann: Domain branching in uniaxial ferromagnets - asymptotic behavior of the energy. In: SFB 611-Preprint. 420, 2008.

  • Capella Kort, A., F. Otto: A rigidity result for a perturbation of the geometrically linear three-well problem. In: SFB 611-Preprint. 425, 2008.

Selman, Prof. Dr. Alan L.

State University of New York at Buffalo, United States of America
Field of research: Computer science
Host: Prof. Dr. Klaus W. Wagner Julius-Maximilians-Universität Würzburg
  • Christian Glasser, Alan L. Selman, Stephen Travers, Klaus Wagner: The Complexity of Unions of Disjoint Sets. In: Journal of Computer and System Sciences. 74, 2008, p. 1173 - 1187 [computational complexity].

  • Christian Glasser, A. Pavan, Alan L. Selman, Liyu Zhang: Splitting NP-complete Sets. In: SIAM Journal on Computing. 37, 2008, p. 1517 - 1535 [computational complexity].

Shimizu, Prof. Dr. Senjo

Kyoto University, Japan
Field of research: Analysis
Host: Prof. Dr. Jan Prüß Martin-Luther-Universität Halle-Wittenberg
  • Jan Pruess, Senjo Shimizu, Mathias Wilke: Qualitative Behaviour of Incompressible Two-Phase Flows with Phase Transitions:The Case of Non-Equal Densities. In: Commun. PDE. 2014, [Two-phase Navier-Stokes equations, surface tension, phase transitions, entropy, semiflow, stability, compactness, generalized principle of linearized stability, convergence to equilibria].

  • Yoshihiro Shibata, Senjo Shimizu: On the maximal L_p-L_q regularity of the Stokes problems with first order boundary condition; model problems. In: J. Math. Soc. Japan. 64, 2012, p. 561 - 626 [maximal L_p-L_q regularity, Stokes equation, first order boundary condition, half-space problem, R-bounded, Fourier multiplier theorem].

  • Jan Pruess, Yoshihiro Shibata, Senjo Shimizu, Gieri Simonett: On well-posedness of incompressible two-phase flows with phase transition: The case of equal densities. In: Evolution Equations & Control Theory. 1, 2012, p. 171 - 194 [Two-phase Navier-Stokes equations, surface tension, phase transitions, entropy, well-posedness, time weights].

  • Senjo Shimizu: Maximal regularity and its application to free boundary problems for the Navier-Stokes equations. In: Sugaku Expositions, American Mathematical Society. 25, 2012, p. 105 - 130 [Maximal regularity, free boundary problems, Navier-Stokes equations, operator valued Fourier multiplier, R-bounded].

  • Jan Pruess, Senjo Shimizu: On well-posedness of incompressible two-phase flows with phase transition: The case of non-equal densities. In: J. Evolution Equations. 12, 2012, p. 917 - 941 [Two-phase Navier-Stokes equations, surface tension, phase transitions, well-posedness, maximal L_p-regularity].

Volberg, Prof. Dr. Alexander

Michigan State University, United States of America
Field of research: Analysis
Host: Prof. Dr. Christoph Martin Thiele Rheinische Friedrich-Wilhelms-Universität Bonn
  • Boros, Nicholas; Székelyhidi, László, Jr.; Volberg, Alexander : Laminates meet Burkholder functions. In: J. Math. Pures Appl. (9) 100 (2013), no. 5, 687–700. . 100, 2013, p. 687 - 700 [Burkholder, Bellman function, laminates].

  • Ivanisvili, P.; Volberg, A.: Hessian of Bellman functions and uniqueness of the Brascamp-Lieb inequality. In: J. Lond. Math. Soc. (2) 92 (2015), no. 3, 657–674.. 92, 2015, p. 657 - 674 [Brascamp-Lieb inequality, Bellman function].

  • Alexander Volberg, Pavel Zorin-Kranich : Sparse domination on non-homogeneous spaces with an application to Ap weights. In: arXiv:1606.03340 . 2016, p. 1 - 12 [non-homogeneous singular integrals, weighted estimates].

Xi, Prof. Dr. Changchang

Beijing Normal University, People's Republic of China
Field of research: Algebra
Host: Prof. Dr. Steffen Koenig Universität zu Köln
  • Yuming Liu,Changchang Xi: Constructions of stable equivalences of Morita type for finite-dimensional algebras III. In: Journal of the London Mathematical Society. 76, 2007, p. 567 - 585 [Stable equivalence of Morita type, endomorphism algebra, Gorenstein algebra, self-injective dimension].

  • Hanxing Lin,Changchang Xi: On Hochschild extensions of reduced and clean rings. In: Communications in Algebra. 36, 2008, p. 388 - 394 [Reduced ring, reversible ring, symmetric ring, Hochschild extension].

  • Changchang Xi: On the finitistic dimension conjecture, III: Related to the pair eAe \subseteq A. In: Journal of Algebra. 319, 2008, p. 3666 - 3688 [finitistic dimension, Gorenstein dimension, *-syzygy module].

  • Changchang Xi: Stable equivalences of adjoint type. In: Forum Math.. 20, 2008, p. 81 - 97 [Hochschild cohomology, stable equivalence, Cartan determinant, cellular algebra, representation dimension].

  • Steffen Koenig; Changchang Xi: Affine cellular algebras. In: Adv. Math.. 229, 2012, p. 139 - 182 [Cellular algebras; Affine cellular algebra; Affine Hecke algebra; Representations; Global dimension.].