Search for

Bibliographia Humboldtiana Index

Bibliographia Humboldtiana

IV. Translations


Asharabi, Dr. Rashad

, Saudi Arabia
Field of research: Analysis
Host: Prof. Dr. Jürgen Prestin Universität zu Lübeck
  • Rashad M. Asharabi: Aliasing Error for Sampling Series Derivatives. In: SAMPLING THEORY IN SIGNAL AND IMAGE PROCESSING. 13, 2014, p. 1 - 20 [Sampling series, aliasing error, Fourier transform.].

  • Mahmoud H. Annaby and Rashad M. Asharabi: Computing eigenvalues of Sturm–Liouville problems by Hermite interpolations. In: Numerical Algorithms. 60, 2012, p. 355 - 367 [Sinc method, Hermite interpolations, Sturm–Liouville problem].

  • Mahmoud H. Annaby and Rashad M. Asharabi: Error estimates associated with sampling series of the linear canonical transforms. In: IMA Journal of Numerical Analysis. 35, 2015, p. 931 - 946 [Linear canonical transform; fractional Fourier transform; sampling theory; truncation, amplitude and jitter errors.].

  • Mahmoud H. Annaby and Rashad M. Asharabi: Bounds for truncation and perturbation errors of nonuniform sampling series. In: BIT Numerical Mathematics . 56, 2016, p. 807 - 832 [Nonuniform sampling theorems , Truncation, amplitude and jitter errors].

  • Rashad M. Asharabi and Jürgen Prestin: A Modification of Hermite sampling with a Gaussian multiplier. In: Numerical Functional Analysis and Optimization. 36, 2015, p. 419 - 437 [Error bounds; Gaussian convergence factor; Gaussian multiplier; Hermite sampling; Sinc approximation].

  • Rashad M. Asharabi and Jürgen Prestin: On two-dimensional classical and Hermite sampling. In: IMA Journal of Numerical Analysis. 36, 2016, p. 851 - 871 [Multidimensional sampling; generalized sampling; error bounds; Gaussian convergence factor.].

  • Rashad M. Asharabi: Generalized sinc-Gaussian sampling involving derivatives. In: Numerical Algorithms. ----, 2016, p. DOI 10.1007/s11075-016-0129-4 [Generalized sampling, Sinc approximation, Gaussian multiplier, Error bounds].

Bobkov, Prof. Dr. Sergey Germanovich

University of Minnesota, United States of America
Field of research: Analysis
Host: Prof. Dr. Alexander Grigor'yan Universität Bielefeld
  • Sergey Bobkov, Gennadiy Chistyakov, Friedrich Götze: Second order concentration on the sphere. In: Communications in Comtemporary Mathematics. 2016, [Concentration of measure phenomenon, logarithmic Sobolev inequalities].

  • Sergey Bobkov, James Melbourne: Hyperbolic measures on infinite dimensional spaces. In: Probability Surveys. 13, 2016, p. 57 - 88 [Hyperbolic (convex) measures, dimension, localization, dilation of sets].

  • Sergey Bobkov: Closeness of probability distributions in terms of Fourier-Stieltjes transforms. In: Uspekhi Matemat. Nauk. 71, 2016, p. 37 - 98 [Probability metrics, smoothing inequalities].

  • Sergey Bobkov: Closeness of probability distributions in terms of Fourier-Stieltjes transforms. In: Russian Math. Surveys. 71, 2016, p. 1021 - 1079 Original author: Sergey Bobkov (English) [Probability metrics, smoothing inequalities].

  • Sergey Bobkov, Gennadiy Chistyakov, Friedrich Götze: Regularized distributions and entropic stability of Cramer's characterization of the normal law. In: Stochastic Processes and their Applications. 126, 2016, p. 3865 - 3887 [Cramer's theorem, Normal characterization, Stability problems].

  • Sergey Bobkov, Gennadiy Chistyakov, Friedrich Götze: Stability of Cramer's characterization of normal laws in information distances. In: High dimensional probability VII: The Cargese Volume. Progress in Probability. (Ed. Christian Houdre, David Mason, Patricia Reynaud-Bouret, Jan Rosinski) Birkhauser, Springer, 2016, p. 3 - 35 [Characterization of normal laws, Cramer's theorem, Stability problems].

  • Sergey Bobkov: Asymptotic expansions for products of characteristic functions under moment assumptions of non-integer orders. In: The IMA Volumes in Mathematics and its Applications. Concentration, Convexity and Discrete Structures. (Ed. Eric Carlen, Mokshay Madiman, Elisabeth Werner) Springer, 2017, p. 297 - 357.

  • Sergey Bobkov: Concentration properties of restricted measures with applications to non-Lipschitz functions. In: Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics. 2169, 2017, p. 25 - 53.

  • Sergey Bobkov: Berry-Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances. In: Probability Theory and Related Fields. 2017, [Central Limit Theorem, Transport Distances, Edgeworth Expansions, Coupling].

Lauret, Dr. Emilio

Universidad Nacional de Cordoba, Argentina
Field of research: Geometry
Host: Prof. Dr. Dorothee Schüth Humboldt-Universität zu Berlin
  • Emilio A. Lauret and Fiorela Rossi Bertone.: Multiplicity formulas for fundamental strings of representations of classical Lie algebras. In: Journal of Mathematical Physics. 58, 2017, p. 111703 [Weight multiplicity, fundamental string].

  • Emilio A. Lauret: Spectral uniqueness of bi-invariant metrics on symplectic groups. In: Transformation Groups. 2018, Original author: Emilio A. Lauret [bi-invariant metrics, spectral rigidity, compact symmetric spaces, isospectral].

  • Emilio A. Lauret, Fiorela Rossi Bertone: Weight multiplicity formulas for bivariate representations of classical Lie algebras. In: Journal of Mathematical Physics. 59, 2018, p. 081705 [weight multiplicities, bivariate representations].

  • Emilio A. Lauret, Fiorela Rossi Bertone: On the SO(n+3) to SO(n) branching multiplicity space. In: Comptes Rendus Acad. Sci. Paris, Ser. I Math.. 356, 2018, p. 1112 - 1124 [branching laws, branching multiplicity space].

  • Emilio A. Lauret: The smallest Laplace eigenvalue of homogeneous 3-spheres. In: Bulletin of the London Mathematical Society. 2018, [3-sphere, homogeneous spheres, smallest Laplace eigenvalue, Yamabe problem, spectral rigidity].

Ren, Prof. Dr. Jingli

Zhengzhou University, People's Republic of China
Field of research: Analysis
Host: Prof. Dr. Stefan Siegmund Technische Universität Dresden
  • Jingli Ren; Zhibo Cheng: On high-order delay differential equation. In: Computers & Mathematics with Applications. 57, 2009, p. 324 - 331 [Periodic solution; High-order; Delay differential equation; Inequality; Mawhin’s continuation theorem].

  • Jingli Ren; Zhibo Cheng: Periodic solutions for generalized high-order neutral differential equation in the critical case. In: Nonlinear Analysis: Theory, Methods & Application. 71, 2009, p. 6182 - 6193 [periodic solution, high order, neutral differential equation, critical case.].

Shayanfar, Dr. Nikta

Binaloud University of Mashhad, Iran
Field of research: Numerical analysis
Host: Prof. Heike Fassbender Technische Universität Carolo-Wilhelmina zu Braunschweig
  • Francisco Marcellán, Nikta Shayanfar: OPUC, CMV matrices and perturbations of measures supported on the unit circle. In: Linear Algebra and its Applications. 485, 2015, p. 305 - 344 [Orthogonal polynomials on the unit circle; GGT matrix; CMV matrix; Fundamental matrix; Canonical linear spectral transformations].

  • Nikta Shayanfar, Heike Fassbender: Linearization schemes for Hermite matrix polynomials. In: ScienceOpen, ScienceOpen Research. 2015, [Polynomial eigenvalue problem; Linearization; Eigenvalue problem; Matrix polynomial; Hermite basis; Interpolation polynomial].

Stockie, Prof. Dr. John Michael

Simon Fraser University, Canada
Field of research: Numerical analysis
Host: Prof. Dr. Malte A. Peter Universität Augsburg
  • Michael Chapwanya, Wentao Liu, John M. Stockie: A model for reactive porous transport during re-wetting of hardened concrete. In: Journal of Engineering Mathematics. 65, 2009, p. 53 - 73 [porous media, reaction-diffusion equations, concrete chemistry].

  • John Michael Stockie: Modelling and simulation of porous immersed boundaries. In: Computers and Structures. 87, 2009, p. 701 - 709 [fluid structure interaction, porous media, membrane transport].

  • Enkeleida Lushi and John M. Stockie: An inverse Gaussian plume approach for estimating atmospheric pollutant emissions from multiple point sources. In: Atmospheric Environment. 44, 2010, p. 1097 - 1107 [advection-diffusion equation, Gaussian plume, source estimation, inverse problem].

  • Isabell Graf, Maurizio Ceseri, John M. Stockie: Multiscale model of a freeze-thaw process for tree sap exudation. In: Journal of the Royal Society Interface. 12, 2015, p. 20150665 [tree sap, plant hydraulics, Stefan problem, porous media, phase change, sap exudation].

  • Jeffrey K. Wiens, JF Williams, John M. Stockie: Riemann solver for a kinematic wave traffic model with a discontinuous flux. In: Journal of Computational Physics. 242, 2013, p. 1 - 23 [traffic flow, hyperbolic conservation laws, conservative finite volume methods].

  • Isabell Graf and John M. Stockie: A mathematical model for maple sap exudation. In: Maple Syrup Digest. 24A, 2014, p. 15 - 19.

Tran Nhan Tam, Dr. Quyen

Da Nang University of Education, Vietnam
Field of research: Applied mathematics
Host: Prof. Dr. Michael Hinze Universität Hamburg
  • [1] Michael Hinze and Tran Nhan Tam Quyen: Matrix coefficient identification in an elliptic equation with the convex energy functional method . In: Inverse Problems. 32, 2016, p. 085007 (29pp).

  • [2] Michael Hinze, Barbara Kaltenbacher and Tran Nhan Tam Quyen: Identifying conductivity in electrical impedance tomography with total variation regularization. In: Numerische Mathematik. 138, 2018, p. 723 - 765.

  • [3] Tran Nhan Tam Quyen: Variational method for multiple parameter identification in elliptic PDEs. In: Journal of Mathematical Analysis and Applications. 461, 2018, p. 676 - 700.

  • [4] Michael Hinze, Bernd Hofmann and Tran Nhan Tam Quyen: Variational method for reconstructing the source in elliptic systems from boundary observations. In: (Submitted). 2017, p. 1 - 20.