Prof. Dr. Oliver Roth

Profile

Academic positionFull Professor
Research fieldsAnalysis, Differential Equations
KeywordsGeometric complex analysis, Loewner Evolution, Geometric PDEs, Geometric Function Thoery, Funktionentheorie (Adr.Blatt 9.01)

Current contact address

CountryGermany
CityWürzburg
InstitutionJulius-Maximilians-Universität Würzburg
InstituteLehrstuhl für Mathematik IV
Homepagewww.mathematik.uni-wuerzburg.de/~roth

Host during sponsorship

Prof. Dr. Frederick W. GehringDepartment of Mathematics, University of Michigan, Ann Arbor
Start of initial sponsorship01/03/2000

Programme(s)

1999Feodor Lynen Research Fellowship Programme

Publications (partial selection)

2008Oliver Roth, Daniela Kraus: Critical points of inner functions, nonlinear partial differential equations, and an extension of Liouville's theorem. In: J. London Math. Soc., 2008, 183-202
2007Oliver Roth, Daniela Kraus, Stephan Ruscheweyh: A boundary version of Ahlfors' Lemma, locally complete conformal metrics and conformally invariant reflection principles for analytic maps. In: J. d'Analyse Math., 2007, 219-256
2007Oliver Roth: A general conformal geometric reflection principle. In: Trans. Amer. Math. Soc., 2007, 2501-2529
2007Oliver Roth: A sharp inequality for the logarithmic coefficients of univalent functions. In: Proc. Amer. Math. Soc., 2007, 2051-2054
2006Oliver Roth, Daniela Kraus: Weighted distortion in conformal mapping in euclidean, hyperbolic and elliptic geometry. In: Ann. Acad. Sci. Fenn. Math., 2006, 111-130
2005Oliver Roth, Karl-Joachim Wirths: A generalization of Bertilsson's theorem. In: Bull. Belg. Math. Soc., 2005, 53-63
2004Dmitri Prokhorov and Oliver Roth: On the local extremum property of the Koebe function. In: Math Proc. Camb. Phil. Soc., 2004, 301-312
2003Oliver Roth: A nonlinear extremal problem for Bloch functions with applications to geometric function theory. In: Arch. Math., 2003, 655-665
2003Richard Greiner and Oliver Roth: On the radius of convexity of linear combinations of univalent functions and their derivatives. In: Math. Nachr., 2003, 153-164
2002Oliver Roth: A distortion Theorem for bounded univalent functions. In: Annales Academiae Scientiarum Fennicae Mathematica, 2002, 257-272
2001Oliver Roth, R. Greiner: On support points of univalent functions and a disproof of a conjecture of Bombieri. In: Proc. Amer. Math. Soc, 2001, 3657-3664