Dr. Kanat S. Abdukhalikov

Profile

Academic positionAssociate Professor, Senior Lecturer, Reader
Research fieldsAlgebra, Theory of Numbers, Algebraic Geometry
Keywordsfinite groups, integral lattices, Lie algebras, linear codes, representations

Current contact address

CountryUnited Arab Emirates
CityAl Ain
InstitutionUnited Arab Emirates University
InstituteDepartment of Mathematical Sciences

Host during sponsorship

Prof. Dr. Rudolf ScharlauFakultät für Mathematik, Technische Universität Dortmund, Dortmund
Start of initial sponsorship01/01/2001

Programme(s)

2000Humboldt Research Fellowship Programme

Publications (partial selection)

2013Kanat Abdukhalikov: On codes over rings invariant under affine groups . In: Advances in Mathematics of Communications , 2013, 253-265
2009Kanat Abdukhalikov, Eiichi Bannai, Sho Suda: Association schemes related to universally optimal configurations, Kerdock codes and extremal Euclidean line-sets. In: Journal of Combinatorial Theory, Series A , 2009, 434-448
2009Kanat Abdukhalikov, Rudolf Scharlau: Unimodular lattices in dimensions 14 and 15 over the Eisenstein integers. In: Mathematics of Computation , 2009, 387-403
2005Kanat Abdukhalikov: Defining sets of extended cyclic codes invariant under the affine group. In: Journal of Pure and Applied Algebra, 2005, 1-19
2004Kanat Abdukhalikov: Unimodular Hermitian lattices in dimension 13. In: Journal of Algebra, 2004, 186-190
2004Kanat Abdukhalikov: Lattices invariant under the affine general linear group. In: Journal of Algebra , 2004, 638-662
2001Kanat Abdukhalikov: Affine invariant and cyclic codes over p-adic numbers and finite rings. In: Designs, Codes and Cryptography, 2001, 343-370
2001Kanat Abdukhalikov: Codes over p-adic numbers and finite rings invariant under the full affine group. In: Finite Fields and Their Applications, 2001, 449-467
2001Kanat S. Abdukhalikov: Defining sets of cyclic codes invariant under the affine group. In: Electron. Notes Discrete Math. , 2001, 328-336
1997Kanat S. Abdukhalikov: Invariant Hermitian lattices in the Steinberg module and their isometry groups. In: Communications in Algebra, 1997, 2607-2626