Dr. Benjamin Isaac Rotenberg

Profile

Academic positionFull Professor
Research fieldsPhysical Chemistry at Surfaces,Statistical Physics, Soft Matter, Biological Physics, Nonlinear Dynamics
KeywordsElectrokinetic phenomena, Nanofluidics, Supercapacitors, Energy materials, Multiscale modelling and simulation

Current contact address

CountryFrance
CityParis
InstitutionSorbonne Universite
InstituteCNRS, Laboratoire PHENIX

Host during sponsorship

Prof. Dr. Joachim DzubiellaInstitut für Weiche Materie und funktionelle Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Berlin
Prof. Dr. Joachim DzubiellaPhysikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg
Start of initial sponsorship01/02/2018

Programme(s)

2017Friedrich Wilhelm Bessel Research Award Programme

Nominator's project description

Dr. Rotenberg is an internationally recognised expert in the study of materials for chemical energy storage and conversion, such as supercapacitors and carbon dioxide capture and storage devices. He has made important contributions to the theoretical modeling of the functional electrode/electrolyte interface and developed new computer simulation methods to investigate the molecular origin of supercapacitance and high energy density of nanoporous electrodes. In Germany, he will focus on the rational design of functional hybrid interfaces for energy storage, nanocatalysis, and water splitting applications.

Publications (partial selection)

2020S. Coles, C. Park, R. Nikam, M. Kanduc, J. Dzubiella, B. Rotenberg: Correlation Length in Concentrated Elec- trolytes Insights from All-Atom Molecular Dynamics Simulations. In: Journal of Physical Chemistry B, 124, 2020, 1778
2020 Y.-C. Lin, B. Rotenberg, J. Dzubiella: Structure and position-dependent properties of inhomogeneous suspen- sions of responsive colloids. In: Physical Review E, 102, 2020, 042602
2019N. Dubouis, C. Park, M. Deschamps, S. Abdelghani-Idrissi, M. Kanduc, A. Colin, M. Salanne, J. Dzubiella, A. Grimaud, B. Rotenberg: Chasing Aqueous Biphasic Systems from Simple Salts by Exploring the LiTFSI/LiCl/H2O Phase Diagram. In: ACS Central Science, 5, 2019, 640