Dr. Christoph Schran

Profile

Academic positionLecturer, Assistant Professor, Researcher
Research fieldsTheoretical Chemistry: Electron Structure, Dynamics, Simulation
KeywordsMachine Learning Potentials, Aqueous Phase, Solid/Liquid Interfaces, Neural Network Potentials, Hydrogen Bonding

Current contact address

CountryUnited Kingdom
CityCambridge
InstitutionUniversity of Cambridge
InstituteDepartment of Physics - Cavendish Laboratory

Host during sponsorship

Prof. Dr. Angelos MichaelidesDepartment of Physics and Astronomy, University College London (UCL), London
Prof. Dr. Angelos MichaelidesDepartment of Chemistry, University of Cambridge, Cambridge
Start of initial sponsorship01/01/2020

Programme(s)

2019Feodor Lynen Research Fellowship Programme for Postdocs

Publications (partial selection)

2022Richard Beckmann, Fabien Brieuc, Christoph Schran, Dominik Marx: Infrared Spectra at Coupled Cluster Accuracy from Neural Network Representations. In: J. Chem. Theory Comput., 18, 2022, 5492–5501
2022Laura DuránCaballero, Christoph Schran, Fabien Brieuc, Dominik Marx: Neural network interaction potentials for para-hydrogen with flexible molecules. In: The Journal of Chemical Physics, 7, 2022, 074302
2022Venkat Kapil, Christoph Schran, Andrea Zen, Ji Chen, Chris J Pickard, Angelos Michaelides: The first-principles phase diagram of monolayer nanoconfined water. In: Nature, 609, 2022, 512–516
2022Nick Clark, Daniel J. Kelly, Mingwei Zhou, Yi-Chao Zou, Chang Woo Myung, David G. Hopkinson, Christoph Schran, Angelos Michaelides, Roman Gorbachev, Sarah J. Haigh: Tracking single adatoms in liquid in a Transmission Electron Microscope. In: Nature, 2022,
2022Fabian L. Thiemann, Christoph Schran, Patrick Rowe, Erich A. Müller, and Angelos Michaelides: Water Flow in Single-Wall Nanotubes: Oxygen Makes It Slip, Hydrogen Makes It Stick. In: ACS Nano, 16, 2022, 10775–10782
2021Schran, Christoph and Thiemann, Fabian L. and Rowe, Patrick and Müller, Erich A. and Marsalek, Ondrej and Michaelides, Angelos: Machine learning potentials for complex aqueous systems made simple. In: Proc. Natl. Acad. Sci., 118, 2021, e2110077118
2021Schran, Christoph and Brieuc, Fabien and Marx, Dominik: Transferability of machine learning potentials: Protonated water neural network potential applied to the protonated water hexamer. In: J. Chem. Phys., 154, 2021, 051101
2020Schran, Christoph and Brezina, Krystof and Marsalek, Ondrej: Committee neural network potentials control generalization errors and enable active learning. In: J. Chem. Phys., 153, 2020, 104105