Prof. Dr. Eva Miranda

Profile

Academic positionFull Professor
Research fieldsDifferential geometry,Dynamical systems and ergodic theory
KeywordsMathematical Physics, Hamiltonian Dynamics, Symplectic Geometry, Poisson Geometry, Geometric Quantisation
Honours and awards

2021: ICREA Academia Prize

2017: Chaire d'Excellence de la Fondation des Sciences Mathématiques de Paris

2016: ICREA Academia Prize

Current contact address

CountrySpain
CityBarcelona
InstitutionUniversitat Politecnica de Catalunya
InstituteDepartment of Mathematics

Host during sponsorship

Prof. Dr. Hansjörg GeigesMathematisches Institut, Universität zu Köln, Köln
Start of initial sponsorship01/07/2022

Programme(s)

2022Friedrich Wilhelm Bessel Research Award Programme

Nominator's project description

Professor Miranda is an outstanding mathematician who has made significant contributions to Poisson and singular symplectic geometry as well as geometric quantisation. She has received wide international recognition, including extensive press coverage in popular magazines, for her ground-breaking work in fluid dynamics, concerning Turing complete Euler flows and the Navier-Stokes equations. During her stay in Germany, Professor Miranda's research will focus on questions at the interface of symplectic topology and dynamical systems.

Publications (partial selection)

2022Miranda, Eva and Oms, C{\'e}dric and Peralta-Salas, Daniel: On the singular Weinstein conjecture and the existence of escape orbits for b-Beltrami fields. In: Communications in Contemporary Mathematics, 2022, 2150076
2022Braddell, Roisin and Kiesenhofer, Anna and Miranda, Eva: b-Structures on Lie groups and Poisson reduction. In: Journal of Geometry and Physics, 175, 2022, 104471
2021Cardona, Robert and Miranda, Eva and Peralta-Salas, Daniel and Presas, Francisco: Constructing Turing complete Euler flows in dimension 3. In: Proceedings of the National Academy of Sciences, 118, 2021,
2021Mir, Pau and Miranda, Eva: Geometric quantization via cotangent models. In: Analysis and Mathematical Physics, 11, 2021, 1--35
2021Guillemin, Victor W and Miranda, Eva and Weitsman, Jonathan: On geometric quantization of $$ b\^{} m $$ bm-symplectic manifolds. In: Mathematische Zeitschrift, 298, 2021, 281--288
2021Cardona, Robert and Miranda, Eva and Peralta-Salas, Daniel and Presas, Francisco: Reeb Embeddings and Universality of Euler Flows. Extended Abstracts GEOMVAP 2019. Birkhäuser, Cham, 2021. 115--120
2021Miranda, Eva and Oms, C{\'e}dric: The singular Weinstein conjecture. In: Advances in Mathematics, 389, 2021, 107925
2021Cardona, Robert and Miranda, Eva and Peralta-Salas, Daniel: Turing universality of the incompressible Euler equations and a conjecture of Moore. In: arXiv preprint arXiv:2104.04356, 2021,
2020Miranda Galcer{\'a}n, Eva: Buscando {\'o}rbitas peri{\'o}dicas. In: La Gaceta de la Real Sociedad Matem{\'a}tica Espa{\~n}ola, 23, 2020, 631--654
2020Mir, Pau and Miranda, Eva: Rigidity of cotangent lifts and integrable systems. In: Journal of Geometry and Physics, 157, 2020, 103847
2020Miranda, Eva and Scott, Geoffrey: The geometry of $ E $-manifolds. In: Revista Matem{\'a}tica Iberoamericana, 37, 2020, 1207--1224
2019Braddell, Roisin and Delshams, Amadeu and Miranda, Eva and Oms, C{\'e}dric and Planas, Arnau: An invitation to singular symplectic geometry. In: International Journal of Geometric Methods in Modern Physics, 16, 2019, 1940008
2019Guillemin, Victor and Miranda, Eva and Weitsman, Jonathan: Desingularizing-symplectic structures. In: International Mathematics Research Notices, 2019, 2019, 2981--2998
2019Cardona, Robert and Miranda, Eva and Peralta-Salas, Daniel: Euler flows and singular geometric structures (Euler flows and singular geometric structures). In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (Royal Society), 2019,
2019Cardona, Robert and Miranda, Eva: On the volume elements of a manifold with transverse zeroes. In: Regular and Chaotic Dynamics, 24, 2019, 187--197
2019Cardona, Robert and Miranda, Eva and Peralta-Salas, Daniel and Presas, Francisco: Universality of Euler flows and flexibility of Reeb embeddings. In: arXiv preprint arXiv:1911.01963, 2019,
2018Miranda, Eva and Planas, Arnau: Classification of bm-Nambu structures of top degree. In: Comptes Rendus Mathematique, 356, 2018, 92--96
2018Guillemin, Victor W and Miranda, Eva and Weitsman, Jonathan: Convexity of the moment map image for torus actions on bm-symplectic manifolds. In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376, 2018, 20170420
2018Miranda, Eva and Planas, Arnau: Equivariant classification of bm-symplectic surfaces. In: Regular and Chaotic Dynamics, 23, 2018, 355--371
2018Cardona, Robert and Miranda, Eva: Integrable systems and closed one forms. In: Journal of Geometry and Physics, 131, 2018, 204--209
2018Guillemin, Victor W and Miranda, Eva and Weitsman, Jonathan: On geometric quantization of b-symplectic manifolds. In: Advances in Mathematics, 331, 2018, 941--951
2018Bolsinov, Alexey and Matveev, Vladimir S and Miranda, Eva and Tabachnikov, Serge: Open problems, questions and challenges in finite-dimensional integrable systems. In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376, 2018, 20170430
2018Bouloc, Damien and Miranda, Eva and Zung, Nguyen Tien: Singular fibres of the Gelfand--Cetlin system on MANI (n). In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376, 2018, 20170423
2018Martinez-Torres, David and Miranda, Eva: Zeroth Poisson homology, foliated cohomology and perfect Poisson manifolds. In: Regular and Chaotic Dynamics, 23, 2018, 47--53
2017Frejlich, Pedro and Mart{\'\i}nez Torres, David and Miranda, Eva: A note on the symplectic topology of $ b $-manifolds. In: Journal of Symplectic Geometry, 15, 2017, 719--739
2017Kiesenhofer, Anna and Miranda, Eva: Cotangent models for integrable systems. In: Communications in Mathematical Physics, 350, 2017, 1123--1145
2017Delshams, Amadeu and Kiesenhofer, Anna and Miranda, Eva: Examples of integrable and non-integrable systems on singular symplectic manifolds. In: Journal of Geometry and Physics, 115, 2017, 89--97
2017Miranda, Eva and Presas, Francisco and Solha, Romero: Geometric quantization of semitoric systems and almost toric manifolds. In: arXiv preprint arXiv:1705.06572, 2017,
2017Esposito, Chiara and Miranda, Eva: Rigidity of infinitesimal momentum maps. In: Israel Journal of Mathematics, 219, 2017, 757--781
2017Torres, David Mart{\'\i}nez and Miranda, Eva: Weakly hamiltonian actions. In: Journal of geometry and physics, 115, 2017, 131--138
2016Kiesenhofer, Anna and Miranda, Eva and Scott, Geoffrey: Action-angle variables and a KAM theorem for b-Poisson manifolds. In: Journal de Math{\'e}matiques Pures et Appliqu{\'e}es, 105, 2016, 66--85
2016Kiesenhofer, Anna and Miranda, Eva: Noncommutative integrable systems on b-symplectic manifolds. In: Regular and chaotic dynamics, 21, 2016, 643--659
2015Guillemin, Victor and Miranda, Eva and Weitsman, Jonathan: Desingularizing $ b\^{} m $-symplectic structures. In: arXiv preprint arXiv:1512.05303, 2015,
2015Guillemin, Victor and Miranda, Eva and Pires, Ana Rita and Scott, Geoffrey: Toric actions on b-symplectic manifolds. In: International Mathematics Research Notices, 2015, 2015, 5818--5848
2014Guillemin, Victor and Miranda, Eva and Pires, Ana Rita and Scott, Geoffrey: Convexity for Hamiltonian torus actions on $ b $-symplectic manifolds. In: arXiv preprint arXiv:1412.2488, 2014,
2014Miranda, Eva: Integrable systems and group actions. In: Open Mathematics, 12, 2014, 240--270
2014Guillemin, Victor and Miranda, Eva and Pires, Ana Rita: Symplectic and Poisson geometry on b-manifolds. In: Advances in mathematics, 264, 2014, 864--896
2013Laurent-Gengoux, Camille and Miranda, Eva: Coupling symmetries with Poisson structures. In: Acta Mathematica Vietnamica, 38, 2013, 21--32
2013Garc{\'\i}a Prada, Oscar and Ginzburg, Viktor and Goldman, William and Miranda, Eva and Mu{\~n}oz, Vicente: GESTA 2011: New Trends in Symplectic and Contact Geometry Preface. In: Geometriae Dedicata, 165, 2013, 1--3
2013Miranda, Eva and Presas, Francisco: Geometric Quantization of real polarizations via sheaves. In: arXiv preprint arXiv:1301.2551, 2013,
2013Miranda, Eva and Solha, Romero: On a Poincar{\'e} lemma for foliations. Foliations 2012. 2013. 115--137
2013Frejlich, Pedro and Mart{\'\i}nez Torres, D and Miranda, Eva: Symplectic topology of$\backslash$(b$\backslash$)-symplectic manifolds. In: CRM Preprints, 2013,
2012Miranda, Eva and Monnier, Philippe and Zung, Nguyen Tien: Rigidity of Hamiltonian actions on Poisson manifolds. In: Advances in mathematics, 229, 2012, 1136--1179
2012Miranda Galcer{\'a}n, Eva: The Hirsch conjecture has been disproved: an interview with Francisco Santos. In: Newsletter of the European Mathematical Society, 2012,
2011Laurent-Gengoux, Camille and Miranda, Eva and Vanhaecke, Pol: Action-angle coordinates for integrable systems on Poisson manifolds. In: International mathematics research notices, 2011, 2011, 1839--1869
2011Guillemin, Victor and Miranda, Eva and Pires, Ana Rita: Codimension one symplectic foliations and regular Poisson structures. In: Bulletin of the Brazilian Mathematical Society, New Series, 42, 2011, 607--623
2011Miranda, Eva: From action-angle coordinates to geometric quantization: a round trip. In: Oberwolfach report, Geometric quantization in the non-compact setting, MFO Oberwolfach reports, 2011,
2010Hamilton, Mark D and Miranda, Eva: Geometric quantization of integrable systems with hyperbolic singularities. Annales de l'Institut Fourier. 2010. 51--85
2010Miranda, Eva: The Clay Public Lecture and Conference on the Poincar{\'e} Conjecture. In: Newsletter of the European Mathematical Society, 2010,
2009Miranda, Eva: Symmetries and singularities in Hamiltonian systems. Journal of Physics: Conference Series. 2009. 012011
2007Miranda, Eva: Some rigidity results for Symplectic and Poisson group actions. XV International Workshop on Geometry and Physics. 2007. 177--183
2006Miranda, E and Zung, NT: A note on equivariant normal forms of Poisson structures, Math. In: Research Notes, 13, 2006, 6
2005Miranda, Eva: A normal form theorem for integrable systems on contact manifolds. 2005,
2005Miranda, Eva and Ngọc, San V{\~u}: A singular Poincar{\'e} lemma. In: International Mathematics Research Notices, 2005, 2005, 27--45
2004Miranda, Eva and Zung, Nguyen Tien: Equivariant normal form for nondegenerate singular orbits of integrable Hamiltonian systems. Annales scientifiques de l’Ecole normale sup{\'e}rieure. 2004. 819--839
2003Miranda Galcer{\'a}n, Eva: On symplectic linearization of singular Lagrangian foliations. 2003,
2003Curr{\'a}s-Bosch, Carlos and Miranda, Eva: Symplectic linearization of singular Lagrangian foliations in M4. In: Differential Geometry and its applications, 18, 2003, 195--205
2001Miranda, Eva: On the symplectic classification of singular Lagrangian foliations. Proceedings of the IX Fall Workshop on Geometry and Physics (Vilanova i la Geltr{\'u}, 2000), Publ. R. R. Soc. Mat. Esp.. 2001. 239--244