Zum Inhalt springen
- {{#headlines}}
- {{title}} {{/headlines}}
Profil
| Derzeitige Stellung | Professor W-3 und Äquivalente |
|---|---|
| Fachgebiet | Numerik, Optimierung, Simulation,Algebra, Zahlentheorie, Algebraische Geometrie |
| Keywords | GKK tau-matrices, matrix inequalities, matrix norms, quadritic eigenvalue problem, stability |
Aktuelle Kontaktadresse
| Land | Deutschland |
|---|---|
| Ort | Berlin |
| Universität/Institution | Technische Universität Berlin |
| Institut/Abteilung | Institut für Mathematik |
Gastgeber*innen während der Förderung
| Prof. Dr. Volker Mehrmann | Institut für Mathematik, Technische Universität Berlin, Berlin |
|---|---|
| Beginn der ersten Förderung | 01.11.2002 |
Programm(e)
| 2002 | Humboldt-Forschungsstipendien-Programm |
|---|---|
| 2006 | Sofja Kovalevskaja-Preis-Programm |
Projektbeschreibung der*des Nominierenden
| Whether you are looking at the handling and flying qualities of the new Airbus, developing a new drug to combat Aids or designing the ideal underground timetable for a city with more than a million inhabitants - at some time or other you will have to do some complicated computations. The amount of data computers have to cope with is extremely large, we are talking in terms of millions of equations and unknowns, and they only have a finite number of digits for representing a number. In order to solve this problem using reliable and fast algorithms you need to know as much about computers as mathematics. Olga Holtz is working at the interface of pure and applied mathematics. She is searching for methods which are both fast and reliable - which in this field of applied mathematics is usually a contradiction in terms. Her project, developing a method of matrix multiplication, should provide the solution to a multitude of computational calculations in science and engineering. |
Publikationen (Auswahl)
| 2005 | Olga Holtz, Amos Ron: Approximation orders of shift-invariant subspaces of W_2^s(R^d). In: Journal of approximation theory, 2005, 97-148 |
|---|---|
| 2005 | Olga Holtz: Evaluation of Sylvester type determinants using block-triangularization. In: H. G. W. Begehr, R. P. Gilbert, M. E. Muldoon, M. W. Wong Advances in Analysis, Proceedings of the 4th International ISAAC Congress . World Scientific, 2005. 395-405 |
| 2005 | Olga Holtz: M-matrices satisfy Newton's inequalities. In: Proceedings of the American Mathematical Society, 2005, 711-717 |
| 2004 | Olga Holtz, Volker Mehrmann, Hans Schneider: Potter, Wielandt, and Drazin on the matrix equation AB=omega BA: new answers to old questions.. In: American Mathematical Monthly, 2004, 655-667 |
| 2003 | Olga Holtz: Hermite-Biehler, Routh-Hurwitz, and total positivity. In: Linear Algebra and Its Applications, 2003, 105-110 |