Zum Inhalt springen
- {{#headlines}}
- {{title}} {{/headlines}}
Profil
| Derzeitige Stellung | Professor W-3 und Äquivalente |
|---|---|
| Fachgebiet | Mathematik Allgemein und übergreifende Themen; Sammlungen |
| Keywords | Representation Theory, Finite Group, Cohomology, Invariant Theory |
Aktuelle Kontaktadresse
| Land | Vereinigtes Königreich |
|---|---|
| Ort | Aberdeen |
| Universität/Institution | University of Aberdeen |
| Institut/Abteilung | Department of Mathematical Sciences |
Gastgeber*innen während der Förderung
| Prof. Dr. Henning Krause | Fakultät für Elektrotechnik, Informatik und Mathematik (EIM), Universität Paderborn, Paderborn |
|---|---|
| Beginn der ersten Förderung | 01.09.2005 |
Programm(e)
| 2004 | Humboldt-Forschungspreis-Programm für Naturwissenschaftler*innen aus den USA |
|---|
Projektbeschreibung der*des Nominierenden
| Professor Dave Benson is an outstanding mathematician who made significant contributions to the representation theory of finite groups. He started as a pure group theorist with an existence proof of Janko's fourth simple group. Today, his main interest is centered around 'Representations and Cohomology' (which is the title of two beautiful volumes he wrote). His work is built on connections to a number of other fields like algebraic topology and commutative algebra. Professor Benson is popular as an enthusiastic lecturer, and his interests reach far beyond mathematics: he is an expert on 'Mathematics and Music' and, last not least, an excellent juggler. |
Publikationen (Auswahl)
| 2009 | David J. Benson, Srikanth B. Iyengar and Henning Krause: Local cohomology and support for triangulated categories. In: Ann. Scient. Éc. Norm. Sup., 4e série, 2009, 575-621 |
|---|---|
| 2008 | David J. Benson and Henning Krause: Complexes of injective kG-modules. In: Algebra and Number Theory, 2008, 1-30 |
| 2008 | David J. Benson: Idempotent kG-modules with injective cohomology. In: Journal of Pure and Applied Algebra, 2008, 1744-1746 |
| 2008 | David J. Benson and Jon F. Carlson: Varieties and cohomology of infinitely generated modules. In: Arch. Math. Basel, 2008, 122-125 |