Dr. Christian Bönicke

Profil

Derzeitige StellungProfessor W-1 und Äquivalente
FachgebietGeometrie, Topologie,Analysis, Differentialgleichungen
Keywordsdynamic asymptotic dimension, K-theory, Homology, C*-algebras, Étale groupoids

Aktuelle Kontaktadresse

LandVereinigtes Königreich
OrtGlasgow
Universität/InstitutionUniversity of Glasgow
Institut/AbteilungSchool of Mathematics and Statistics

Gastgeber*innen während der Förderung

Dr. Gregory StevensonSchool of Mathematics and Statistics, University of Glasgow, Glasgow
Beginn der ersten Förderung01.12.2019

Programm(e)

2019Feodor Lynen-Forschungsstipendien-Programm für Postdocs

Publikationen (Auswahl)

2021B\"{o}nicke, Christian and Chakraborty, Sayan and He, Zhuofeng and Liao, Hung-Chang: A note on crossed products of rotation algebras. In: J. Operator Theory, 85, 2021, 391--402
2021B\"{o}nicke, Christian: K-theory and homotopies of twists on ample groupoids. In: J. Noncommut. Geom., 15, 2021, 195--222
2020B\"{o}nicke, Christian: A going-down principle for ample groupoids and the {B}aum-{C}onnes conjecture. In: Adv. Math., 372, 2020, 107314, 73
2020B\"{o}nicke, Christian and Li, Kang: Ideal structure and pure infiniteness of ample groupoid {$C^*$}-algebras. In: Ergodic Theory Dynam. Systems, 40, 2020, 34--63
2020Ara, Pere and B\"{o}nicke, Christian and Bosa, Joan and Li, Kang: Strict comparison for {$C^*$}-algebras arising from almost finite groupoids. In: Banach J. Math. Anal., 14, 2020, 1692--1710
2020Easo, Philip and Garijo, Esperanza and Kaubrys, Sarunas and Nkansah, David and Vrabec, Martin and Watt, David and Wilson, Cameron and B\"{o}nicke, Christian and Evington, Samuel and Forough, Marzieh and Gir\'{o}n Pacheco, Sergio and Seaton, Nicholas and White, Stuart and Whittaker, Michael F. and Zacharias, Joachim: The {C}untz-{T}oeplitz algebras have nuclear dimension one. In: J. Funct. Anal., 279, 2020, 108690, 14
2019B\"{o}nicke, Christian and Dell'Aiera, Cl\'{e}ment: Going-down functors and the {K}\"{u}nneth formula for crossed products by \'{e}tale groupoids. In: Trans. Amer. Math. Soc., 372, 2019, 8159--8194
2018B\"{o}nicke, Christian and Chakraborty, Sayan and He, Zhuofeng and Liao, Hung-Chang: Isomorphism and {M}orita equivalence classes for crossed products of irrational rotation algebras by cyclic subgroups of {$SL_2(\Bbb{Z})$}. In: J. Funct. Anal., 275, 2018, 3208--3243