Prof. Dr. Rachel Ward

Profil

Derzeitige StellungProfessor W-3 und Äquivalente
FachgebietMathematik in der Informatik,Numerische Analysis,Optimierung
KeywordsDimension Reduction, Randomized Algorithms, Mathematics in Data Science, Mathematical Foundations of Machine Learning, Stochastic Gradient Descent

Aktuelle Kontaktadresse

LandUSA
OrtAustin
Universität/InstitutionUniversity of Texas at Austin
Institut/AbteilungDepartment of Mathematics

Gastgeber*innen während der Förderung

Prof. Dr. Felix KrahmerFakultät für Mathematik, Technische Universität München, Garching
Beginn der ersten Förderung19.12.2024

Programm(e)

2023Friedrich Wilhelm Bessel-Forschungspreis-Programm

Projektbeschreibung der*des Nominierenden

Professor Ward is well known internationally for her seminal contributions to the mathematical foundations of machine learning and data science. She recently generated a significant impact with her theoretical results explaining why stochastic gradient descent approaches are such a powerful tool for training deep neural networks. During her stay in Germany, she intends to advance the mathematical theory of the method of sparse Fourier features, a machine learning approach that she recently proposed for the small data regime.